GETTING THE DETAILS RIGHT
Design Notes – Glulam Timber Structures
Owen Griffiths

These notes have suggestions for:
• Manufacturing functional products
• Achieve Cost effective and practical timber solutions

To assist:
• Concept Designer
• Architect
• Engineer
• Manufacturer
• Constructor

Manufacturing Specifications and Standards
Use Appropriate Specification
• NZS 3606 is Dead !!
• No More No 1 Framing, Engineering etc
• Glulam – AS/NZS 1328

Design Values
Some specifiers are still using NZS3606 as the current code for manufacture of Glulam. This has been replaced for some time by the joint Australian and New Zealand Code AS/NZS1328.
In specifying the grades from which Glulam beams are manufactured some designers are still using non current grades such as Engineering and No 1 framing. These have been replaced by the GL grades detailed in AS/NZS 1328.

<table>
<thead>
<tr>
<th>Glulam Grade</th>
<th>Bending f'_b</th>
<th>Tension parallel to grain f'_t</th>
<th>Shear in beam f'_s</th>
<th>Compression parallel to grain f'_c</th>
<th>Short modulus of elasticity parallel to the grain E</th>
<th>Short duration modulus of rigidity for beams G</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL18</td>
<td>50</td>
<td>25</td>
<td>5.0</td>
<td>50</td>
<td>18500</td>
<td>1230</td>
</tr>
<tr>
<td>GL17</td>
<td>42</td>
<td>21</td>
<td>3.7</td>
<td>35</td>
<td>16700</td>
<td>1110</td>
</tr>
<tr>
<td>GL13</td>
<td>33</td>
<td>16</td>
<td>3.7</td>
<td>33</td>
<td>13300</td>
<td>900</td>
</tr>
<tr>
<td>GL12</td>
<td>25</td>
<td>12.5</td>
<td>3.7</td>
<td>29</td>
<td>11500</td>
<td>770</td>
</tr>
<tr>
<td>GL10</td>
<td>22</td>
<td>11</td>
<td>3.7</td>
<td>26</td>
<td>10000</td>
<td>670</td>
</tr>
<tr>
<td>GL8</td>
<td>19</td>
<td>10</td>
<td>3.7</td>
<td>24</td>
<td>8000</td>
<td>530</td>
</tr>
</tbody>
</table>

1.4.2.3 Manufacturer's grades Manufacturers may opt to declare non-standard properties in excess or in deficit of GL values.

1.4.2.4 Custom specification As an alternative to the GL grades described in 1.4.2.1 and tables 1.1 and 1.2, glulam meeting the requirements of AS/NZS 1328:Part 1 may be manufactured to a custom specification.

1 Owen Griffiths, Marketing Director, McIntosh Timber Laminates Ltd
Other codes relevant to developing Glulam designs are:

Finger Jointing – ASNZS 1491
This controls manufacture of end joints in lamination.

Preservative Treating – ASNZS – 1604
Careful note should be taken as to the limitations of H3 penetration achievable using LOSP treatment. While this is satisfactory for H3.1 it does not provide the greater protection required for external use. Where LOSP is used for beams exposed to weather ASNZS 3602 calls for LOSP treated beams to be protected with a paint coat in order to comply with durability requirements in exterior situations.

In this case CCA treated material provides the required protection. CCA treatment is carried out on laminates before gluing.

Use only licensed manufacturers
Of utmost importance in using Glulam members is the need to specify product supplied by Licensed manufacturers. This is of particular importance bearing in mind liability issues if non licensed product is used in structural applications.

Cost Effective Solutions
Some basic considerations in achieving the most cost effective options in Glulam detailing.

Choosing deeper narrowing members can save up to 50% volume in comparison to wider shallower selection.

![Figure 1](image1)

The instability that might result from deep slender members can be controlled by careful detailing of stability struts or dropped purlins.

![Figure 2](image2)
Functionality Cost Savings

The design depicted in the lower diagram proves a 40% cost saving.

Economies in Curves

Economies in curves is also affected by a number of choices. For example the difference between a solid knee curved portal with a radius of 3.0m and 1.2m would be approx 3% favoring the larger radius. However the saving by going to an open knee portal would be approx 30%
Tapering Saves

Tapering members instead of detailing rectangular sections allows cost savings in reducing section size in areas where loads are reduced.

Figure 5