Earthquake resilient timber structures using rocking Cross Laminated Timber (CLT) walls coupled with Resilient Slip Friction Joints (RSFJs)

There is an increasing public pressure to have damage avoidant structural systems in order to minimize the destruction after severe earthquakes with no post-event maintenance. This study presents and investigates a hybrid steel-timber damage avoidant Lateral Load Resisting System (LLRS) using Cross Laminated Timber (CLT) walls coupled with innovative Resilient Slip Friction (RSF) joints and boundary steel columns. RSF joints are used as ductile links between the adjacent walls or between the walls and the columns. These joints are capable to provide a self-centring behaviour (the main deficiency of conventional friction joints) in addition to a high rate of energy dissipation all in one compact device. One significant advantage of this system is that there are practically no bending stresses in the CLT panels which considerably increases the allowable capacity of the system. A numerical model for a four story prototype building containing the proposed concept is developed and subjected to time-history simulations. The results confirm that this system can be considered as the new generation of resilient LLRSs for different types of structures.

There are also files associated with this article that are available for download:

Return to Journal index