Journal

Novel self-centering friction damping system for seismic resistant cross laminated timber structures

Multi-storey timber structures are becoming progressively desirable owing to their aesthetic and environmental benefits and to the high strength to weight ratio of timber. A recent trend in timber building industry is toward cross laminated timber (CLT) panelized structures. The shake table tests within the SOFIE project have shown that the CLT buildings constructed with traditional methods can experience high damage especially at the connections which generally consist of hold-down brackets and shear connectors with mechanical fasteners such as nails or bolts. Thus, current construction methods are not recognised as reliable in seismic prone areas. The main objective of this project is to develop a new low damage structural concept using innovative resilient slip friction (RSF) damping devices. The component test results demonstrate the capacity of this novel joint for dissipating earthquake energy as well as self-centring to minimize the damage and the residual drift after a severe event. The application of RSF joints as hold-down connectors for walls were investigated through numerical studies. Moreover, a core wall system comprised of cross laminated timber and RSF connectors is subjected to time-history earthquake simulations. The numerical results exhibit no residual displacement alongside a significant reduction in peak acceleration which can be attributed to significant amount of dissipated seismic energy over the RSF joints within the system.

There are also files associated with this article that are available for download:

Return to Journal index