Timber design guide

Corrections to all third editions.

Updated: 21-04-2011

Note: several reprinted versions have been made. These can already have some of the corrections incorporated.

Page	Object	Now	Should Read
26	Figure 3.6	f_c and f_t are missing from	Should have f_c near top of axis in line with top of curve.
	_	vertical axis.	Should have f _t near bottom of axis in line with Brittle fracture.
41	Figure 4.14, horizontal axis	Range of MoE from 0 – 100	Range of MoE from 0 – 16 GPa (as in Figure 14.3)
59	Photo caption is split on 2	p 59: Curved beam being	p 59: Curved beam being fabricated from straight LVL for swimming pool
	pages	fabricated from straight	roof
		p 60: LVL for swimming	
		pool roof	
150	RH column – three locations	El _b	E_{lb}
152	Table 15.9, column 6 & 7	Wrong captions & values	Modulus of Elasticity Modulus of Rigidity E G (GPa) (MPa) 18.5 1230 16.7 1100 13.3 900 11.5 770 10.0 670 8.0 530
154	Formula for k ₄	$k_4 = (1 - 0.323/\sqrt{n})0.66$	$k_4 = \frac{(1 - 0.323 / \sqrt{n})}{0.677}$
155	5 th line from bottom, RH column	Table 15.15	Figure 15.4

156	Table 15.15	Wrong table	Modulus of elasticity Tension Bearing modulus of rigidity Bending, shear Compression Figure 15.4. Moisture content factor for plywood, k ₁₄
157	LH Column, formula for R _k	Missing brackets	$R_k = \left[1 - \frac{2.7v_R}{\sqrt{n}}\right] R_{0.05}$
162	Line 4	AS/NZS 1170.2 Structural design actions – Wind actions –Wind actions	AS/NZS 1170.2 Structural design actions – Wind actions
169	Formula for A _s in RH column	$A_s = db^2/6$	$A_s = 2/3 \text{ db}$
173	Beam design example, 7 th line from bottom	Equation from Figure 16.3	Stress tables (p 150)
173	Beam design example	Table 15.4 (4 times)	Table 15.5 (4 times)
174	Notes	Shear strength f _v	Shear strength f _s
175	Notes	Shear strength f _v	Shear strength f _s
180	Notes for hySPAN	Bending strength $f_s = 5.3$ MPa Shear strength $f_b = 48.0$ MPa	Bending strength $f_b = 48.0 MPa$ Shear strength $f_s = 5.3 MPa$
208	RH column, 8 th line from bottom	$h \cos^2 \theta$	h cosθ
208	RH column, 4 th eqn. from top	tanθ	$\sin\theta$

209	Nail design, line 7	Figure 19.11	Figure 19.14
213	Plywood gusset option. Line 2	Figure 19.8	Figure 19.13
213	Plywood gusset option. Line 3	$(1-d/2L)tan\ 15^{\circ}) = 476 \text{ mm}$	$(1-d/2L)\sin 15^\circ) = 479 \text{ mm}$
213	6 th line from bottom	Nails: Try 3.55	Nails: Try 3.15
214	Small steel gusset option, line 2 and 4	F _y	f_{y}
215	RH column, last eqn.	$(1+g/r)^3$	$K = \frac{(1+q/r)^3}{(q/r)\sqrt{(1+(q/r)^2+2(q/r)\sin\theta}}$
216	LH column, line 2	P = 3.6 F n r q / M*	P = 3.6 F n r q / 3M*
220	Centre of Table 19.4	33.5	3.5
221	Appendix	Wrong figure and formulae	Coefficients: $k = \frac{I_2}{I_1} \frac{h}{s}$ $\phi = \frac{f}{h}$ $m = 1 + \phi$ $B = 2(k+1) + m$ $C = 1 + 2m$ $N = B + mC$ $A = (kC^2 + B^2 + C^2 - BC)/N^2$ $D = (6\phi + 3k + 10k\phi)/N$
222	RH side, last line	$\Delta_{ m B}$	$\leftarrow \Delta_{\mathrm{B}}$

223	Case (c)	Caption is correct but the drawing and equations are all wrong.	Case (c) Horizontal UDL w per unit height on left roof: w per unit height $X = \frac{wf^2(C+m)}{8N}$ $M_B = +X + \frac{wfh}{2}$ $M_C = -\frac{wf^2}{4} + mX$ $M_D = +X - \frac{wfh}{2}$ $H_A = -\frac{X}{h} - \frac{wf}{2}$ $H_E = -\frac{X}{h} + \frac{wf}{2}$ $V_A - V_E = -\frac{wfh(1+m)}{2L}$ $\Delta_C = \frac{wLf^2s(3B-C)}{96ELN}$ $\Rightarrow \Delta_B = \frac{wfsh^2(4B-C-m)}{48EL_2} + \frac{2f}{L}\Delta_C$
229	Caption to Figure 20.3	Figure 20.3	Figure 20.4
	Caption to Figure 20.4	Figure 20.4	Figure 20.5
229	RH column, Horizontal reactions, line 4	Figure 20.3	Figure 20.4
229	RH column, Horizontal reactions, last line	Figure 20.4	Figure 20.5
248	Deflection due to nail slip. Line 4	There is no slip n a glued joint	There is no slip in a glued joint
252	LH column, 5 th line from bottom	can be uses in	can be used in

255	Strength Bending Capacity	A_f = net area of flange = $B h_t$ - $(h_r-h_w)t$	A_f = net area of flange = $B h_f - 0.5(h_r - h_w) t$	
255	Strength Bending Capacity	D_1 = distance between flange centroids = h - h _t	D_1 = distance between flange centroids = $h - h_f$	
287	Line 8, Eqn for (EI) _{ef}	$I_t = \gamma_c$	$I_t + \gamma_c$	
307	RH column, line 9	Figure 27.6	Figure 27.7	
307	Caption to Figure 27.6	Figure 27.6	Figure 26.7	
308	RH column, Ultimate	Table 27.	Table 27.5	
	strength, line 15			
309	Equations for F _{v,Rk}	Several errors	$\int f_{\mathrm{h.l.k}} t_{1} d$	(a)
			$f_{\mathrm{h,2,k}}t_2d$	(b)
			$\left \frac{f_{h,1,k}t_1d}{1+\beta} \left[\sqrt{\beta + 2\beta^2 \left[1 + \frac{t_2}{t_1} + \left(\frac{t_2}{t_1} \right)^2 \right] + \beta^3 \left(\frac{t_2}{t_1} \right)^2} - \beta \left(1 + \frac{t_2}{t_1} \right) \right] + \frac{F_{ax,Rk}}{4}$	(c)
			$F_{\text{v,Rk}} = \min \left\{ \frac{f_{\text{h,1,k}} t_1 d}{2 + \beta} \left[\sqrt{2\beta (1 + \beta) + \frac{4\beta (2 + \beta) M_{\text{y,Rk}}}{f_{\text{h,1,k}} d - t_1^2}} - \beta \right] + \frac{F_{\text{ax,Rk}}}{4} \right\}$	(d)
			$\left[1,05\frac{f_{\text{h.1.k}}t_2d}{1+2\beta}\left[\sqrt{2\beta^2(1+\beta)+\frac{4\beta(1+2\beta)M_{\text{y.Rk}}}{f_{\text{h.1.k}}d-t_2^2}}-\beta\right]+\frac{F_{\text{ax.Rk}}}{4}\right]$	(e)
			$1,15\sqrt{\frac{2\beta}{1+\beta}}\sqrt{2M_{y,Rk}f_{h,1,k}d} + \frac{F_{ax,Rk}}{4}$	(f)

			$F_{\text{v,Rk}} = \min \begin{cases} f_{\text{h,l,k}} t_{\text{1}} d \\ 0.5 f_{\text{h,2,k}} t_{\text{2}} d \\ 1.05 \frac{f_{\text{h,l,k}} t_{\text{1}} d}{2 + \beta} \left[\sqrt{2\beta (1 + \beta) + \frac{4\beta (2 + \beta) M_{\text{y,Rk}}}{f_{\text{h,l,k}} d - t_{\text{1}}^2}} - \beta \right] + \frac{F_{\text{ax,Rk}}}{4} \\ 1.15 \sqrt{\frac{2\beta}{1 + \beta}} \sqrt{2M_{\text{y,Rk}} f_{\text{h,l,k}} d} + \frac{F_{\text{ax,Rk}}}{4} \end{cases}$	(g) (h) (j) (k)
310	Equations for F _{v,Rk}	Several brackets missing	$F_{\text{v,Rk}} = \min \begin{cases} f_{\text{h,k}} t_1 d \left[\sqrt{2 + \frac{4M_{\text{y,Rk}}}{f_{\text{h,k}}} d t_1^2} - 1 \right] + \frac{F_{\text{ax,Rk}}}{4} & \text{(c)} \\ 2, 3\sqrt{M_{\text{y,Rk}}} f_{\text{h,k}} d + \frac{F_{\text{ax,Rk}}}{4} & \text{(d)} \\ f_{\text{h,k}} t_1 d & \text{(e)} \end{cases}$	
			$F_{\text{v,Rk}} = \min \begin{cases} f_{\text{h,1,k}} t_1 d & \text{(f)} \\ f_{\text{h,1,k}} t_1 d \left[\sqrt{2 + \frac{4M_{\text{y,Rk}}}{f_{\text{h,1,k}} d t_1^2}} - 1 \right] + \frac{F_{\text{ax,Rk}}}{4} & \text{(g)} \\ 2,3 \sqrt{M_{\text{y,Rk}} f_{\text{h,1,k}} d} + \frac{F_{\text{ax,Rk}}}{4} & \text{(h)} \end{cases}$	
310 313	LH Column, line 2 Line 16	Table 27.7	Table 27.8 Table 28.6	
213	Line 10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

315	Eqn 28.1	Error in formula and brackets are missing	$a = \max \begin{cases} d \frac{(n-4+r)}{(r-1)} \\ 2.5d \end{cases}$
315	Below Eqn 28.1	r = number of rows fasteners	r = number of rows of fasteners
315	Below Eqn 28.2	or greater than 5	or greater than 5d
318	Caption to Table 28.8	Table 28.8	Table 28.7
318	RH Column, line 3	Table 28.8	Table 28.7
319	Caption to Table 28.9	Table 28.9	Table 28.8
319	LH Column, line 14	Table 28.9	Table 28.8